Atomic Database for C I from C II

J. Dubau⁺, T.Kato^{*}, and U. I. Safronova ^{*}

+ Observatoire of Paris, Meudon, F-92195 MEUDON Cedex, France

*National Institute for Fusion Science, Oroshi-cho, Toki, Gifu, 509-52, Japan

1 Introduction

Carbon is the main constituent of the graphite tiles which cover the inner side of the vacuum chamber of the latest tokamaks (JET, TFTR, JET-60). Carbon is also one of the most abundant elements of the Universe. The tokamak spectra are very rich in C lines emitted in the outer region of the plasma, the coolest part, where C is not completely ionized and can still emit a line spectrum. The recombination rates will play an important role in the plasma cooling when more ionized species recombine progressively.

The dielectronic recombination (DR) process for C (C I from C II) can be schematically represented by $1s^22s^22p + e \Rightarrow 1s^22s2p^2nl$, $1s^22s2p^3(LS)$, $1s^22p^3nl$, $1s^22p^4$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\
1s^2 2s^2 2p, 1s^2 2s 2p^2 + e \text{ or } 1s^2 2s^2 2p^2, 1s^2 2s^2 2pnl, 1s^2 2s 2p^3 (L'S') + h\nu, \qquad (1)$$

where $LS={}^3S, {}^1D, {}^1P$ for autoionizing states and $L'S'={}^5S, {}^3D, {}^3P$ for bound states. An intensity factor Q_d for transitions from autoionizing levels $\gamma=1s^22s2p^2nl, \ 1s^22s2p^3(LS), \ 1s^22p^3nl, \ 1s^22p^4$ to excited states $\gamma'=1s^22s^22p^2, \ 1s^22s^22pnl, \ 1s^22s2p^3(L'S')$ can be defined as follows:

$$Q_d(\gamma, \gamma' | \alpha_0) = g_{\gamma} A_r(\gamma, \gamma') \frac{A_a(\gamma, \alpha_0)}{A_r(\gamma) + A_a(\gamma)}, A_r(\gamma) = \sum_{\gamma''} A_r(\gamma, \gamma''), A_a(\gamma) = \sum_{\alpha'} A_a(\gamma, \alpha'), \qquad (2)$$

where $A_r(\gamma, \gamma')$ are radiative transition probabilities and $A_a(\gamma, \alpha')$ is the autoionization rate, with $\alpha'=1s^22s^22p$, $1s^22s2p^2$ and $\alpha_0=1s^22s^22p$.

We used the Cowan [1] and SUPERSTRUCTURE codes taking into account 28 even and 29 odd parity configurations $1s^22l_12l_22l_3nl$ with up to n=6 and $0 \le l \le (n-1)$. The contributions of the configurations with $6 \le n \le 500$ are taken into account in the calculation of all $1s^22l_12l_22l_3nl[LSJ]$ states up to n=6. In the present paper we can present only a small amount of our numerical data due to the limited space.

2 Energy Levels, Radiative Transition Probabilities

We carried out detailed calculations of radiative transition probabilities and autoionization rates for the intermediate states $1s^22s^22pnl$, $1s^22s2p^3$, $1s^22p^4$, $1s^22s2p^2nl$ and $1s^22p^3nl$ with n=2 - 6. The atomic energy levels, radiative transition probabilities and autoionization rates were obtained by using the atomic structure code of Cowan [1]. Table 1 lists energies calculated by the Cowan (a) and SUPERSTRUCTURE (b) codes, together with theoretical data obtained by Nahar and Pradhan (c) [2] and recommended data (d) by Wiese et al. [3] for C I with the $1s^22s^22p^2$, $1s^22s^2p^3$, $1s^22s^22pnl$ intermediate states. The differences in the theoretical data (a) and (b) can be explained by different refinements of the Hartree-Fock approximation. The Cowan

code allows the use of scaled factors for radial integrals. We used a scaled factor equal to 0.85. The SUPERSTRUCTURE code is based on a scaled Thomas-Fermi-Dirac-Amadi potential. The scaling parameter is different for each angular momentum l. These parameters are iterated to give the minimum energy of a term or a group of terms. It should be noted that both methods did not take into account correlation effects properly which explains the disagreement of these data (columns a and b in Table 1) with the recommended data (column c) for some states.

3 Total Dielectronic Recombination Rate Coefficients

The total dielectronic recombination rate coefficient is obtained by the sum over all the levels,

$$\alpha_d^t(\alpha_0) = 3.3 \times 10^{-24} \left(\frac{I_H}{T_e}\right)^{3/2} \sum_{\gamma, \gamma'} e^{-\frac{E_S}{T_e}} Q_d(\gamma, \gamma' | \alpha_0) / g(\alpha_0).$$
 (3)

The sum over γ means sum over all autoionization levels. As we already mentioned before we calculated numerically the $Q_d(\gamma, \gamma'|\alpha_0)$ values with $\gamma'=1s^22s^22pnl$, $1s^22s2p^3$ (5S , 3D , 3P) and $\gamma=1s^22s2p^3$ (3S , 1D , 1P), $1s^22p^4$, $1s^22s2p^2nl$, $1s^22p^3nl$ up to n=6. We take into account the states with $n \geq 6$ by scaling Q_d . It was shown in Ref.[4] that the largest contribution to Q_d for large n are due to the 2s-2p transitions. In our case it is transitions as $2s^22pnl[LS]-2s2p^2(LS)nl[L'S']$. Radiative transition probabilities for these transitions are almost constant for large n and non-radiative transition probabilities (autoionizing rates) are proportional to $\frac{1}{n^3}$:

$$A_r(2s^22pnl[LS], \ 2s2p^2(L_{12}S_{12})nl[L'S'J']) = A_r(2s^22pn_0l[LS], \ 2s2p^2(L_{12}S_{12})n_0l[L'S'J']), \quad (4)$$

$$A_a(2s2p^2(L_{12}S_{12})nl[L'S'J']|\ 2s^22p\ ^2P) = \left(\frac{n_0}{n}\right)^3 A_a(2s2p^2(L_{12}S_{12})n_0l[L'S'J']|\ 2s^22p\ ^2P). \tag{5}$$

Table 2 gives these data for n=4, 5, 6 with l=s, p, d, f, g and all kinds of L'S'J'. We chose for illustration the data with the largest values of Q_d . We can see from this Table that Eqs.(4,5) are correct for transitions with large values of A_r and A_a .

Acknowledgments

U.I.Safronova would like to thank the members of the Data and Planning Center, the National Institute for Fusion Science; the Director of the Center, Prof.H.Momota and the Director of NIFS, Prof.A.Iiyoshi, for their hospitality and financial support.

References

- [1] R. D. Cowan, "The Theory of Atomic Structure and Spectra", University of California Press, Berkeley 1981
- [2] S. N. Nahar and A. K. Pradhan, Phys. Rev. A 44, 2935 (1991)
- [3] W. L. Wiese, M. W. Smith, and B. M. Glennon, *Atomic Transition Probabilities* v. 1, NSRDS-4 Washington, DC (1966)
- [4] T. Kato, U. I. Safronova, and M. Ohira, Physica Scripta 54 (1996)

Table 1: Energy $(10^3 cm^{-1})$ and sum of weighted radiative transition probabilities $(\sum (gA_r)$ in $sec^{-1})$ of carbon (C I) for $1s^22s2l_12l_2(L_{12}S_{12})nl[LSJ]$ states. Comparison of different methods and recommended data from Ref.[3]: a-Cowan code, b-SUPERSTRUCTURE code, c-Ref.[2], d-Ref.[3]

$-\frac{2s2l_1nl_2}{}$	$L_{12}S_{12}$	LS	J		<i>E</i> in 10	$\sum (gA_r)$		
1 2	12 12			a	b	c	d	$\frac{2}{a}$
$2s^{2}2p^{2}$	(^{3}P)	^{3}P	0	0.000	0.000	0.000	0.000	0.0000+00
$2s^{2}2p^{2}$	(^1D)	1D	2	10.651	13.398	10.502	10.194	0.0000+00
$2s^22p^2$	(^1S)	1S	0	18.953	20.411	23.023	21.648	0.0000+00
$2s^22p3p$	(^{2}P)	1P	1	66.496	66.608	69.661	68.858	0.2661 + 08
$2s^{2}2p3p$	(^2P)	3D	2	67.069	67.403	69.650	69.711	0.8172 + 08
$2s^{2}2p3p$	(^2P)	3S	1	67.776	68.401	71.855	70.744	0.5717 + 08
$2s^22p3p$	(^2P)	3P	1	70.429	70.876	72.722	71.365	0.1337 + 09
$2s^22p3p$	(^2P)	1D	2	71.863	73.077	74.248	72.611	$0.2293\!+\!09$
$2s^22p3p$	(^2P)	1S	0	73.420	76.223	75.992	73.976	$0.5352\!+\!08$
$2s2p^3$	(^4S)	5S	2	31.866	24.432	32.515	33.735	0.0000+00
$2s2p^3$	(^2D)	3D	2	67.675	66.919	63.943	64.093	$0.1710\!+\!10$
$2s2p^3$	(^{2}P)	3P	1	78.763	76.186	76.014	75.256	0.2419 + 10
$2s^{2}2p3s$	(^2P)	3P	1	58.402	58.689	60.585	60.353	0.9067 + 09
$2s^22p3s$	(^2P)	^{1}P	1	59.686	61.388	62.385	61.982	$0.1219\!+\!10$
$2s^22p3d$	(^2P)	^{3}P	1	75.570	80.375	80.996	79.319	0.4165 + 09
$2s^{2}2p3d$	(^{2}P)	^{1}D	2	76.069	76.288	79.350	77.681	$0.3626\!+\!09$
$2s^{2}2p3d$	(^{2}P)	3D	2	76.606	77.050	80.119	78.307	0.1836 + 10
$2s^{2}2p3d$	(^{2}P)	1F	3	76.682	77.433	80.327	78.531	0.1767 + 10
$2s^{2}2p3d$	(^{2}P)	3F	3	76.429	76.739	79.965	78.216	$0.3085\!+\!09$
$2s^22p3d$	(^{2}P)	^{1}P	1	76.644	77.653	79.877	78.728	$0.2985\!+\!09$
$2s^22p4s$	(^{2}P)	3P	0	76.383		79.680	78.105	1.453 + 08
$2s^22p4s$	(^{2}P)	1P	1	76.932		79.877	78.338	7.806 + 08
$2s^22p4p$	(^2P)	1D	2	80.914		83.168	81.770	1.012 + 08
$2s^{2}2p4p$	(^2P)	1S	0	82.434		83.794	82.252	5.231 + 07
$2s^22p4d$	(^{2}P)	3D	1	82.147		85.681	83.830	$6.559\!+\!08$
$2s^22p4d$	(^{2}P)	1F	3	82.241		85.780	83.949	1.989 + 09
$2s^22p5s$	(^{2}P)	1P	1	82.443		85.661	83.882	3.972 + 08
$2s^{2}2p5p$	(^2P)	1D	2	84.186		87.062	85.400	4.708 + 07
$2s^22p5p$	(^2P)	1S	0	84.613		87.325	85.626	1.312 + 07
$2s^22p5d$	(^2P)	1F	3	84.868		88.300	86.450	7.044 + 08
$2s^22p5d$	(^{2}P)	^{1}P	1	84.860		88.358	86.491	1.335 + 08
$2s^22p6s$	(^2P)	^{1}P	1	84.940		88.253	86.414	2.338 + 08
$2s^22p6p$	(^2P)	3P	0	85.625		88.877	87.077	4.477 + 06
$2s^22p6d$	(^2P)	1D	2	86.127		89.489	87.632	1.786 + 08
$2s^22p6d$	(^2P)	3F	2	86.160		89.599	87.706	2.013 + 08

Table 2: Energy excitation $(E_S \text{ in eV})$, weighted radiative transition probabilities $((gA_r) \text{ in } sec^{-1})$, autoionization rate $(A_a \text{ in } sec^{-1})$ and factor intensities $(Q_d \text{ in } sec^{-1})$ for $2s^22pnl-2s2p^2(L_{12}S_{12})nl(L'S'J')$ transitions with $n{=}4$, 5, and 6.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.914+07 $1.104+08$ $1.293+08$ $6.193+08$	7.948 8.599 8.897									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1.104 + 08 \\ 1.293 + 08 \\ \hline 6.193 + 08 \end{array} $	8.599									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1.104 + 08 \\ 1.293 + 08 \\ \hline 6.193 + 08 \end{array} $	8.599									
6 (^{1}D) ^{1}D 2 2.426+13 5.127+13 2.577+09 1.398+09	1.293+08 6.193+08										
	6.193+08	0.091									
$2s^22nnn - 2s2n^2(I_{c12}S_{12})nn(I'S'J')$											
		0.10=									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.960 - 00	8.187									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3.368+08 $3.984+08$	$8.710 \\ 8.954$									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.587 + 09	12.49									
	4.393+08	13.03									
6 (^{3}P) ^{3}Pa 2 $1.454+12$ $1.178+13$ $2.328+10$ $2.297+10$	4.725 + 08	13.28									
$2s^22pnd 2s2p^2(L_{12}S_{12})nd(L'S'J')$											
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1.984 + 09	10.88									
	1.293+09	11.22									
6 $\binom{1}{S}$ ^{3}D 3 $2.323+12$ $4.198+12$ $1.501+10$ $1.417+10$	1.306 + 10	11.39									
$4 (^{3}P) ^{3}Fa 2 4.384+13 4.580+13 2.100+10 2.075+10$	$3.310\!+\!09$	12.84									
5 $\binom{3}{4}P$ $\binom{3}{4}Fa$ 2 $1.278+13$ $1.482+13$ $2.183+10$ $2.017+10$	1.881 + 09	13.18									
$ 6 \qquad \qquad (^{3}P) \qquad ^{3}Fa \qquad \qquad 2 \qquad \qquad 6.991 + 12 \qquad 8.113 + 12 \qquad 2.189 + 10 \qquad 2.139 + 10 $	3.071 + 09	13.36									
$4 \qquad \qquad (^{3}P) \qquad ^{1}F \qquad \qquad 3 \qquad \qquad 4.895 + 13 5.632 + 13 3.084 + 10 2.895 + 10$	4.194 + 09	12.86									
$5 (^3P) ^1F 3 1.418+13 1.831+13 3.114+10 3.006+10$	3.879 + 09	13.19									
$ 6 \qquad \qquad (^{3}P) \qquad ^{1}F \qquad \qquad 3 \qquad \qquad 8.314 + 12 1.050 + 13 3.144 + 10 3.009 + 10 $	$3.968\!+\!09$	13.37									
$2s^22pnf - 2s2p^2(L_{12}S_{12})nf(L'S'J')$	$2s2p^2(L_{12}S_{12})nf(L'S'J')$										
$4 \qquad \qquad (^{3}P) \qquad ^{1}D \qquad 2 \qquad \qquad 3.140+11 3.740+11 2.362+10 2.351+10$	3.429 + 09	12.87									
$5 (^{3}P) ^{1}D 2 1.970+11 1.460+11 2.273+10 2.266+10$	2.405 + 09	13.20									
$ 6 \qquad \qquad (^{3}P) \qquad ^{1}D \qquad \qquad 2 \qquad \qquad 1.170+11 1.670+11 2.286+10 2.271+10 $	2.581 + 09	13.37									
$4 (^{3}P) ^{3}Ga 3 4.201+12 4.233+12 3.003+10 2.990+10$	4.940 + 09	12.87									
(^{3}P) ^{3}Ga 3 $7.880+11$ $9.260+11$ $3.089+10$ $3.079+10$	4.347 + 09	13.20									
6 (^3P) 3Ga 3 $5.450+11$ $6.320+11$ $3.082+10$ $3.074+10$	4.387 + 09	13.37									
$4 (^{3}P) ^{1}G 4 4.257+12 4.288+12 3.850+10 3.839+10$	6.337 + 09	12.87									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.556+09	13.21									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.589 + 09	13.38									
$2s^22png - 2s2p^2(L_{12}S_{12})ng(L'S'J')$											
5 $\binom{^{3}P}{^{1}G}$ $\binom{^{1}C}{^{1}G}$ $\binom{^{3}C}{^{1}G}$ $\binom{^{3}$	4.766 + 09	13.21									
6 (^3P) 1G 4 1.8+10 2.0+10 4.020+10 4.016+10	$4.923\!+\!09$	13.38									
$5 (^{3}P) ^{1}H 5 1.9+10 2.5+10 4.870+10 4.862+10$	5.231 + 09	13.21									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.366+09	13.38									